\(\int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx\) [294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 145 \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {e \csc (c+d x)} E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{5 a d} \]

[Out]

-4/5*e*cos(d*x+c)*(e*csc(d*x+c))^(1/2)/a/d+2/5*e*cot(d*x+c)*csc(d*x+c)*(e*csc(d*x+c))^(1/2)/a/d-2/5*e*csc(d*x+
c)^2*(e*csc(d*x+c))^(1/2)/a/d+4/5*e*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(co
s(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3963, 3957, 2918, 2644, 30, 2647, 2716, 2719} \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {\sin (c+d x)} E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \csc (c+d x)}}{5 a d} \]

[In]

Int[(e*Csc[c + d*x])^(3/2)/(a + a*Sec[c + d*x]),x]

[Out]

(-4*e*Cos[c + d*x]*Sqrt[e*Csc[c + d*x]])/(5*a*d) + (2*e*Cot[c + d*x]*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(5*a*d
) - (2*e*Csc[c + d*x]^2*Sqrt[e*Csc[c + d*x]])/(5*a*d) - (4*e*Sqrt[e*Csc[c + d*x]]*EllipticE[(c - Pi/2 + d*x)/2
, 2]*Sqrt[Sin[c + d*x]])/(5*a*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2647

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a*Cos[e +
f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{(a+a \sec (c+d x)) \sin ^{\frac {3}{2}}(c+d x)} \, dx \\ & = -\left (\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos (c+d x)}{(-a-a \cos (c+d x)) \sin ^{\frac {3}{2}}(c+d x)} \, dx\right ) \\ & = \frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos (c+d x)}{\sin ^{\frac {7}{2}}(c+d x)} \, dx}{a}-\frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos ^2(c+d x)}{\sin ^{\frac {7}{2}}(c+d x)} \, dx}{a} \\ & = \frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {\left (2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sin ^{\frac {3}{2}}(c+d x)} \, dx}{5 a}+\frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{x^{7/2}} \, dx,x,\sin (c+d x)\right )}{a d} \\ & = -\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {\left (2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{5 a} \\ & = -\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {e \csc (c+d x)} E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{5 a d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.81 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.59 \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) (e \csc (c+d x))^{3/2} \left (\frac {8 \sqrt {2} e^{i (c-d x)} \sqrt {\frac {i e^{i (c+d x)}}{-1+e^{2 i (c+d x)}}} \left (3-3 e^{2 i (c+d x)}+e^{2 i d x} \left (1+e^{2 i c}\right ) \sqrt {1-e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{2 i (c+d x)}\right )\right ) \sec (c+d x)}{d \left (1+e^{2 i c}\right ) \csc ^{\frac {3}{2}}(c+d x)}-\frac {6 \left (4 \cos (d x) \sec (c)+\sec ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan (c+d x)}{d}\right )}{15 a (1+\sec (c+d x))} \]

[In]

Integrate[(e*Csc[c + d*x])^(3/2)/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(e*Csc[c + d*x])^(3/2)*((8*Sqrt[2]*E^(I*(c - d*x))*Sqrt[(I*E^(I*(c + d*x)))/(-1 + E^((2*I)
*(c + d*x)))]*(3 - 3*E^((2*I)*(c + d*x)) + E^((2*I)*d*x)*(1 + E^((2*I)*c))*Sqrt[1 - E^((2*I)*(c + d*x))]*Hyper
geometric2F1[1/2, 3/4, 7/4, E^((2*I)*(c + d*x))])*Sec[c + d*x])/(d*(1 + E^((2*I)*c))*Csc[c + d*x]^(3/2)) - (6*
(4*Cos[d*x]*Sec[c] + Sec[(c + d*x)/2]^2)*Tan[c + d*x])/d))/(15*a*(1 + Sec[c + d*x]))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 8.11 (sec) , antiderivative size = 642, normalized size of antiderivative = 4.43

method result size
default \(\frac {\sqrt {2}\, \left (4 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticE}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \cos \left (d x +c \right )^{2}-2 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )^{2}+8 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticE}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \cos \left (d x +c \right )-4 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )+4 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticE}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}-2 \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )-2 \sqrt {2}\, \cos \left (d x +c \right )-3 \sqrt {2}\right ) e \sqrt {e \csc \left (d x +c \right )}}{5 a d \left (\cos \left (d x +c \right )+1\right )}\) \(642\)

[In]

int((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/5/a/d*2^(1/2)*(4*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((I*(-I+co
t(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)*cos(d*x+c)^2-2*(-I*(I+cot(d*x+c)
-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((I*(-I+c
ot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2+8*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-
csc(d*x+c)))^(1/2)*EllipticE((I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))*(I*(-I+cot(d*x+c)-csc(d*x+c)))^
(1/2)*cos(d*x+c)-4*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*(I*(-I+cot(d*x+c)-c
sc(d*x+c)))^(1/2)*EllipticF((I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)+4*(-I*(I+cot(d*x+c)-c
sc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2
))*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)-2*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1
/2)*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))-2*2^(1/2)
*cos(d*x+c)-3*2^(1/2))*e*(e*csc(d*x+c))^(1/2)/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.88 \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=-\frac {2 \, {\left ({\left (e \cos \left (d x + c\right ) + e\right )} \sqrt {2 i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (e \cos \left (d x + c\right ) + e\right )} \sqrt {-2 i \, e} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + {\left (2 \, e \cos \left (d x + c\right )^{2} + 2 \, e \cos \left (d x + c\right ) + e\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}}\right )}}{5 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-2/5*((e*cos(d*x + c) + e)*sqrt(2*I*e)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*
x + c))) + (e*cos(d*x + c) + e)*sqrt(-2*I*e)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*
sin(d*x + c))) + (2*e*cos(d*x + c)^2 + 2*e*cos(d*x + c) + e)*sqrt(e/sin(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate((e*csc(d*x+c))**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

Integral((e*csc(c + d*x))**(3/2)/(sec(c + d*x) + 1), x)/a

Maxima [F(-1)]

Timed out. \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=\int { \frac {\left (e \csc \left (d x + c\right )\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*csc(d*x + c))^(3/2)/(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx=\int \frac {\cos \left (c+d\,x\right )\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{3/2}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

[In]

int((e/sin(c + d*x))^(3/2)/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e/sin(c + d*x))^(3/2))/(a*(cos(c + d*x) + 1)), x)